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Abstract

A systematic procedure for obtaining the closed-form eigensolution for thin circular cylindrical shell
vibrations is presented, which utilizes the computational power of existing commercial software packages. For
cylindrical shells, the longitudinal, radial, and circumferential displacements are all coupled with each other
due to Poisson’s ratio and the curvature of the shell. For beam and plate vibrations, the eigensolution can
often be found without knowledge of absolute dimensions or material properties. For cylindrical shell
vibrations, however, one must know the relative ratios between shell radius, length, and thickness, as well as
Poisson’s ratio of the material. The mode shapes and natural frequencies can be determined analytically to
within numerically determined coefficients for a wide variety of boundary conditions, including elastic and
rigid ring stiffeners at the boundaries. Excellent agreement is obtained when the computed natural frequencies
are compared with known experimental results. © 1999 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

Of all existing shell models, the circular cylindrical shell is perhaps the most widely studied. It
has applications in chimney design, pipe flow, and aircraft fuselages to name a few. Many shell
theories have been developed over the last century, as well as methods to solve their governing
equations. A comprehensive review and comparison of shell theories has been done by Leissa
(1973). Here we will restrict the solution to the set of thin shell equations derived by Junger and
Feit (1972). For static analysis, various methods of solution have been proposed. Vinson (1974)
used an operator approach and manipulated the governing equations to obtain a single equation
for the radial deformation. The circumferential and longitudinal displacements are then determined
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by back substitution using the radial solution. Niordson (1985) also took an operator approach
but showed that the deflections can all be derived from a potential function.

The vibration problem for a general shell element has been formulated by Soedel (1981) using
Hamilton’s principle. The presence of second time derivatives makes the approaches used in the
static case very cumbersome due to the increase in the number of terms. Junger and Feit (1972)
assumed displacements of a certain form, determined the boundary conditions that they satisfy,
and restricted discussion to that case. Niordson (1985) used a similar approach in his treatment of
cylindrical shell vibrations, with both sets of authors dealing with freely-supported end conditions.
While this approach produces three frequencies corresponding to the three principal motions for
each model configuration, they are not obtained in increasing numerical order. When scanning
through a desired frequency band, some modes may be inadvertently overlooked.

In this work, the method presented matches individual modes to individual frequencies for any
set of boundary conditions. In this manner, for each modal arrangement there exists a single
frequency and a single correspondence between the radial, longitudinal, and circumferential dis-
placements. This is the approach outlined by Love (1944) but not pursued in its complete form
due to its mathematical complexity. With the advent of high performance computers, however,
the intense calculations required by such an approach are now possible. In the present procedure,
the circumferential and longitudinal displacements are scaled off of the radial deformation, as
done by others (see e.g. Forsberg, 1964; Warburton, 1965; Leissa, 1973; Soedel, 1981). Chung
(1981) developed a procedure to obtain the solution of Sanders’ shell equations for various
boundary conditions by representing the axial behavior of the modal displacements as Fourier
series expansions, obtaining an explicit frequency equation in the form of an infinite series.
Ludwig and Krieg (1981) presented a method to obtain the eigensolution of Fliigge’s equations
by transforming them into algebraic equations in terms of constants to be evaluated numerically.
Approximations were only made in the root solving algorithm for the frequency determinant; the
reduction of the partial differential equations of motion to an algebraic system was exact. For both
of these methods, the natural frequencies can be determined to a high degree of accuracy. They
give analytical solutions to the associated equations of motion for their respective shell theories,
but do not discuss modal orthogonality. The shell theories of Flugge and Sanders can both be
shown to lead to orthogonal modes, but this is often assumed without proof.

In order to apply modal analysis and control, it is also desirable to ensure that the equations of
motion were derived consistently with the associated boundary conditions. In this manner, the
natural mode shapes will form a set of orthogonal basis functions. For forced vibration response,
this reduces the three partial differential equations of motion to a set of ordinary oscillator
equations. Bogner and Archer (1965) showed that for clamped, simply-supported, and free end
conditions, the axisymmetric modes of a general shell of revolution are orthogonal. Tso (1967)
used Hamilton’s principle to show that the modes are orthogonal if the displacements or their
corresponding natural forces vanish on the shell boundaries. For a general shell element, Soedel
(1981) showed that the mode shapes will be mutually orthogonal when the boundary conditions
are conservative. In this paper, we show modal orthogonality by integrating the stiffness operator
of the system by parts, as done by Meirovitch (1967) for beams and plates.

The solutions of the equations of motion derived by Junger and Feit (1972), which follow directly
from Soedel’s formulation (1981) when tailored to a cylindrical shell, will lead to orthogonal modes
because the natural boundary conditions are derived consistently with the governing equations of
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motion. Although the choice of boundary conditions has a significant effect on the shape of the
natural modes (see e.g. Forsberg, 1964; Koga, 1988), orthogonality can be guaranteed for a large
variety of boundary conditions before the eigensolution is attempted. In addition to the classical
free and fixed boundary condition combinations used in the literature, we also investigate the effect
of replacing a free end with an elastic ring stiffener. The elastic strain and kinetic strain energies
derived by Galletly (1955) will be modified according to Al-Najafi and Warburton (1970) to be
consistent with the coordinate system used in this analysis. Qualitatively, many boundary con-
ditions can be recovered from the elastic ring when certain parameters are permitted to take on
extreme values. Letting the elastic modulus go to infinity leads to a rigid ring, while letting it and
the mass density go to zero will produce a free end.

Extensive experimental data has also been generated for cylindrical shells in recent years. The
frequencies obtained from Junger and Feit’s equations of motion agree very well with experimental
data for clamped—clamped (from Arnold and Warburton, 1953; Koval and Cranch, 1962), freely
supported—freely supported (from Bert et al., 1969; Bray and Egle 1970), and clamped—free (from
Gill, 1972; Sharma and Johns, 1972; Khaddakar et al., 1988; Raj et al., 1995) boundary conditions.
The procedure presented here can also accurately predict vibration frequencies for elastic ring—
elastic ring end conditions (from Brogan et al., 1968; El Raheb and Babcock, 1981).

The overall motivation was to develop a self-contained, systematic, and analytical procedure to
generate orthogonal eigensolutions for any given set of boundary conditions taking full advantage
of the computational power of the software packages MATLAB by the MathWorks, Inc. and
MAPLE V by Waterloo Maple Software. Once we have the eigensolution, regardless of the shell
theory, modal analysis techniques are applicable. Forced response can be readily obtained as time
dependent linear combinations of the natural modes. Expressions for the modal displacements are
exact to within numerically determined coefficients. The advantage of explicit displacements over
finite element solutions is the absence of numerical error often introduced when derivatives are
computed from finite difference approximations. Higher modes are calculated with the same
accuracy as lower modes. Modal control is also possible when accurate estimation of the system
behavior can be ascertained. Another advantage of the current approach over finite element
methods is that all modal information can be generated within and stored by the commercial code
MATLARB without a large memory requirement. Depending on the mesh size used, finite element
packages can have several orders of magnitude more bits of information on a particular modal
layout than the analytical approach here. Large displacement gradients that often exist near the
shell boundaries can also be captured without a decrease in spatial mesh size. Once an eigensolution
library is obtained, simulations of forced response and modal control can be accomplished within
MATLAB as well, calling the required modal parameters as needed. No interface between eig-
ensolution information and shell simulation needs to be developed. The tool developed here makes
feasible eigensolution sensitivity studies by simply redefining shell parameters and boundary
condition combinations. Most important, the methodology presented in this paper is not limited
to the shell theory discussed herein.

2. Equations of motion

A cylindrical shell element is shown in Fig. 1, where a, A, and / are the respective shell radius,
thickness, and length. Here the respective displacements in the z-, 0-, and r-directions are denoted
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Fig. 1. A circular cylindrical shell element.

by u, v, and w. Relevant material properties are the Young’s modulus E, mass density p, and
Poisson’s ratio v. If the primary shell displacements are arranged into a vector according to

U(z,0,0) = {u(z,0,1) v(z,0,1) w(z0,0}" (1)

then the governing equations can be expressed in standard operator notation as:

LU (z,0,0]+ .4 = 7(z,0,1) ©)

U (z,0,1)
or’
where L and .# are the 3 x 3 stiffness and inertial operators and % is the external traction vector
containing the distributed loads applied in the longitudinal, circumferential, and radial directions.
For this analysis we will use the equations of motion derived by Junger and Feit (1972), which
follow directly from Soedel’s formulation (1981) when tailored to a thin cylindrical shell. For this

case, the operators have the form:

L L L
Eh 11 12 13
L=— 12 L, L, L23 (3)
_L13 _L23 L33
P e X Ca o
02 247 0027 27 2a 0z00
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where p* = I*/124°.

3. Solution procedure

As done for most continuous systems, the first attempt in solving these equations is the assump-
tion that the response is separable in space and time. Applying a modal expansion of the form

%@&0=§%@ﬁmm 5)

leads to a harmonic time dependence, with each mode vibrating at a frequency w,. Here, #,(?) is
the scalar modal coordinate corresponding to the mode %,(z, 0). For free vibration (# = {0}),
this leads to the standard eigenvalue problem:

L. 0)) = ool {1,z 0)) (©)

The next step is to separate the spatial dependence of the solution between the axial and
circumferential directions. For a closed shell, the modal displacements are assumed to be harmonic
in the 0-direction, given by

{u(z,0) v(z,0) w(z,0)}" = {U(z)sinnd V(z)cosnd W(z)sinn0}" (7)

where 7 is an integer. The harmonic 0-dependence results from requiring the continuity of the shell
displacements along the tangential direction. Due to circular symmetry, all modes other than the
axisymmetric case will be two-fold degenerate, as the assumed displacements

{u(z,0) v(z,0) w(z0)}" ={U(z)cosnd —V(z)sinnd W(z)cosnd}" (8)

will also produce the same equations of motion and thus yield the same eigensolution.

Now that both the time and 0-contributions have been factored out of the response, what
remains is to determine the z-dependence of the modal displacements. At this point, we can
manipulate the equations of motion to obtain a single equation describing the radial deflection.
Once this is done, the remaining displacements can be found by back substitution. This was the
approach taken by Vinson (1974) and is effectively a Gaussian elimination applied to the stiffness.
This technique works well for static shell analysis because the right hand side of eqn (6) vanishes
for the static case. The problem with this approach for the dynamic case is the large amount of
terms that result.

Dealing with the equations of motion in their present form, Love (1944) proposed that modal
displacements share the same exponential behavior multiplied by different constants. Since we now
have three ordinary differential equations in the z variable, this is the standard way to proceed.
Although he obtained a different set of governing shell equations, we will use a similar procedure
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to solve eqn (2). In fact, the solution approach outlined here can be extended to most sets of linear
shell equations, including those for orthotropic shells or specially orthotropic laminates. In Love’s
approach, the constant for the longitudinal displacement can be chosen arbitrarily, but the other
two are some multiples of this value. These multiples determine the ratios between the three modal
deflections. It was determined after some preliminary research that choosing the constant for the
radial displacement as arbitrary was a better choice because it tends to dominate the motion at
higher circumferential mode numbers. In a slight modification of Love’s approach, the modal
deflections are assumed to have the following form:

{UQ) )

where «, A, B, and C are constants ( for a given frequency) to be determined. By factoring 4 out
of the modal response and treating B and C as scaling factors, their values can be determined
based on the modal frequency and system parameters only, while still capturing the ratio between
the modal displacements. This scaling has been done by many authors over the years (see e.g.
Forsberg, 1964; Warburton, 1965; Leissa, 1973; Soedel, 1981), as the radial motion is usually the
dominant feature at lower bandwidths. Here, the values of «,, are given in subscript to show that
they are directly related to the axial modal number m for a fixed tangential mode number n. To
avoid confusion with other summation indices, however, it will be dropped in future discussion.
The dependence of the modal frequencies on the integer mode numbers m and n will be addressed
later in some parametric studies. Following standard procedure, defining a non-dimensional
frequency parameter Q* = w?pa’(1—v?)/E, and substituting eqn (9) into the eigenvalue problem
leads to

V(z) W)} =Ae»*{C B 1}7

i 1— 1
Qz+o<2—7vn2 — ;—vnoc Vol | o
1 — =
+vno¢ Q*+(1+p%) ( vocz—n2> n[l+ p*(n* —o?)] B 0 (10)
2 2 1 0
L —va n[l+ B*(n* —o?)] Q> — B —n*]?—1

For a non-trivial solution of the equations of motion, the determinant of this coefficient matrix
must vanish for each value of n. This leads to an eighth-order polynomial in o whose roots
determine the z-dependence of the mode shapes. In general, solving the roots of the determinant
of eqn (10) for o is not possible in closed form. Hence, people have often resorted to approximate
techniques at this point. We took advantage of computer software packages to carry the original
determinant through the analysis and have them compute the numerical values once the shell
ratios are specified.

As observed by Love (1944), it can be shown that no odd powers appear in the determinant of
the matrix in (10), making it a fourth-order polynomial in . Therefore, the general solution for
the modal displacements can be written in its final form as

4
U(Z) — Z C,.{A,. eotr:,r’a_A; efa,.:/u}

r=1

(11)



J. Callahan, H. Baruh | International Journal of Solids and Structures 36 (1999) 2973-3013 2979

4
V(z) = Y B{d, e+ AL e ) (12)
r=1

4
W(z) =Y (A, 4 A e ) (13)

r=1

where the constants B, and C, are determined by solving any two of the three equations in
the matrix expression (10). The negative sign appears in the summations for the longitudinal
displacement because C, can be shown to be odd in «,. The expressions for B,, C,, and «, are as yet
independent of the boundary conditions prescribed at z = 0 and z = . For a given value of //a,
l/a, and v, these parameters are functions of the non-dimensional frequency Q only. The form of
the solution in (11)—(13) has been known for some time but most researchers have resorted to
finite element solutions due to the effort required to solve for the coefficients. Solving the eigenvalue
problem for a cylindrical shell is often called an inverse approach in the sense that the frequency
can be specified, from which the associated values of o follow. Thus, one can find the shell length
for a given frequency. Modern software packages make it possible to do this quickly in an iterative
fashion, making is possible to vary the frequency value until the appropriate length parameters o
have been found. The primary effort in this analysis is to automate the procedure using the software
packages MAPLE and MATLAB to generate the required expressions and iterate through a
natural frequency band to find all associated zeros of the frequency equation. At this point, one
could also investigate the nature of the roots «, in order to express the displacements (11)—(13) in
terms of strictly real numbers. During the research for this study, we found that two of the four
roots usually appeared as complex conjugate pairs, while the other two were either real or imaginary
but uncorrelated. While finding the coefficients numerically, no pattern was found for the behavior
of the roots, so we chose to leave the displacements in the compact form given above. Further
investigation may show purely real expressions for the modal displacements, but they would be
undoubtedly very lengthy. We outline the numerical solution for the roots ¢, in Section 6.
For the axisymmetric modes, the assumed modal displacements have the simpler form:

{u(z,0) v(z,0) w0} ={Uiz Vi) W' (14)

Since there is no 0-dependence for this class of modes, the natural frequencies will be distinct. With
n set to zero, the determinant of the coefficient matrix in (10) set to zero leads to the following
characteristic equation:

[(1 +ﬁ2)12_vo<2+92] (2 + Q) (B2 +1—0%) —v2’] = 0 (15)

Here, the torsional motion decouples from the radial and longitudinal vibrations. Defining the
root for this case as af = —2Q?/(1—v)(1+ f?), the axisymmetric torsional modes have the form

U(z) = W(z) = 0, V(z):A,cosyZ+A’lsinyZ (16)

where y = Q\/2/(1 —v) (14 B%). When this result of Junger and Feit’s theory is compared with that
of torsional shaft vibration, the only difference is the appearance of the (1+ ) term. This occurs
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because the circumferential deflection » has a small contribution to the bending strains. The
axisymmetric torsional modes can also be obtained by setting n = 0 in eqn (7).

The other class of axisymmetric vibrations consists of longitudinal motion coupled with radial
displacement, characterized by the remaining three roots & (r = 2, 3,4) with the general form:

4 v,

VD= L gyt (7
V(z) =0 (18)
4
W(z) = ), {A e+ Aje "} (19)
r=2

These can be found by setting » = 0 in eqn (8). As discussed for the general case, the frequency
equation and relations between constants are determined by the boundary conditions. Since torsion
decouples from the other vibration types, the two classes can be normalized separately. Both types
will appear in the frequency spectrum, however, so the axisymmetric torsional frequencies must
be included when predicting modes within a given frequency band.

The rigid body modes can be found by setting the frequency to zero in the equations of motion
and solving for modes that have zero mid-plane strain. Table 1 gives the general forms of the rigid
body modes, where € is an arbitrary constant. Due to the two-fold degeneracy of the bending
modes (n = 1), we have a total six rigid body modes. This is consistent with intuition, since a rigid
body in space has six degrees of freedom, three in translation plus three in rotation.

4. Boundary conditions

At each end of the cylindrical shell, four boundary conditions must be specified. Constraints
can be placed on the geometric boundary conditions U(z), V(z), W(z), and dW(z)/dz, their
associated internal loads, or some combination of them. When the extended Hamilton’s principle
is applied, one obtains the equations of motion within the shell domain as well as boundary
expressions. Denoting U and T as the respective elastic strain and kinetic energies, applying this
variational technique yields

Table 1
Rigid body modes for the circular cylindrical shell

Mode type n u(z, 0) v(z, 0) w(z, 0)
Translation z-direction 0 € 0 0

Rotation z-axis 0 0 3 0

Translation y-direction 1 0 % cos 0 % sin 0
Rotation x-axis 1 % sin 0 —%(z/a) cos 0 —%(z/a) sin 0
Translation x-direction 1 0 —% sin 0 % cos 0
Rotation y-axis 1 % cos 0 %(z/a) sin 0 —%(z/a) cos 0
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5] ty (2m (7 62%
J NT—U+w)dt = —J J JM/{./% ¥ +L[“Zl]—ﬁ"}ad0dzdt
t t 0 0

1 (2n 8W z=1/
—f J [NZ(SLH—SZ&J—I— V.ow—M.o (82>:| ad0dr (20)
t z=0

1 JO

1 1

where ¥/ is the external work done by the force vector % and the internal forces along constant
z-section are related to the shell displacements (following Soedel’s 1981 procedure) according to

V.(20) = — 12(11Eh—3vz) {a;: + alz [(2_V)aj;wgz - ;;a” 9}} (22)
N.(2,0) = llihvz {gz v 2 <2Z + w)} (23)
5:2.0) = 2(f4h- ) {igg + +ﬁz>2§ —2 0@;;@} @4

where M. is the internal bending moment, V. is the transverse shear force, N. is the membrane
normal force, and S. is the membrane shear force. These quantities are defined to be positive in
the directions indicated in Fig. 2. Here, ¢, and #, are the endpoints of an arbitrary time interval, at
which the variations (denoted by the d-operation) of the shell displacements are required to vanish.
The displacement vectors (7) or (8) may be substituted into these expressions to yield the internal
forces for any given circumferential mode number 7.

At each end (z = 0 and z = /) four conditions must be specified. Substituting the general forms
of the modal displacements into these constraints lead to the following expression

Fig. 2. Internal forces at a constant z section on the cylindrical shell.
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Table 2
Coeflicient matrix Q entries for the non-axisymmetric modes (n > 0) subject to different boundary
conditions
(r=1,....4)

End condition Oy [
V(Aa) =0 Bt Be %"
U(Aa) =0 C.ext —Ce "
W(Aa) =0 exh oA
W' (Aa) =0 o,e*? —o,e %
S.(Aa) =0 [nC,+a,B.(1+ B*)—2p%na,Je** —[nC,+o,B,(14 %) —2f%no,Je
N.(Aa) =0 [C.a,+v(1 —nB,)le** [Ca,+v(1 —nB,)le "
V.(Aa) =0 o,[o? +nB,—(2—v)n?le* —o [0l +nB,—2—v)n*le %
M_(Aa) =0 [0 +vn(B, —n)le** [0 4+ vn(B, —n)le~**

A

(9] = {0} (25)

where Q is an 8 x 8 coeflicient matrix whose rows depend on the boundary conditions. For a non-
trivial solution, the determinant of this coefficient matrix set to zero is the frequency equation for
the shell modes with circumferential mode number n > 0. When any of the natural boundary
conditions upon application of (21)—(24) are required to vanish, it must do so regardless of 0,
forcing the z-dependent portion to vanish. Table 2 shows the matrix entries for various boundary
conditions prescribed at z = Aa. Entries at z = 0 are found by setting A to zero, and those at the
end z = [ by setting A to //a.

For the axisymmetric case, all derivatives with respect to 6 vanish. In this case, the torsional
mode decouples, rendering the matrix Q given in eqn (25) block diagonal. Thus, it can be dealt
with independent of the radial and longitudinal motion. This results in two independent matrix
equations: one involving a 2 x 2 coefficient matrix for the torsion problem and the second involving
a 6 x 6 coefficient matrix corresponding to the other modes. The product of the determinants of
these two coefficient matrices set to zero is the frequency equation for the axisymmetric modes.
The Q matrix entries of the axisymmetric case can be deduced from Table 2 by setting n = 0.

Another boundary condition we consider here is the stiffening effect of an elastic ring. The
analysis for this case begins with elastic strain and kinetic energy expressions similar to those
derived by Galletly (1955) but modified according to Al-Najafi and Warburton (1970) to be
consistent with the coordinate system used in Fig. 1. As done in these analyses, the cross-sectional
dimensions of the ring are assumed to be small relative to the ring radius, resulting in a shallow
ring theory. For a ring stiffener located at z = z, the elastic strain energy can be expressed in
terms of the local ring displacements by:

1 (> [ER I [ 1 0° ower\  ERl: (0*w 2
Up = ~ Rzo o qu . R i R4G 2R g
2 0 ap \d4r 00 0z ag 00
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E.A 0vr\  GrCyr [O*w 1 ou
+ RR< R>+ RT< R 7R

2
5 WR+% 5 aZaB—Fa 69)1_%%(10 (26)

axg ax

where the subscript R denotes quantities measured relative to the centerline of the ring. Here, E,
and Gy are the respective Young’s and shear moduli of the ring. The quantities /;; and /g, are the
area moments of inertia of the ring cross-section about the r- and z-directions. The cross-sectional
area and St Venant torsional constant are denoted by A, and C, respectively. Each term in eqn
(26) corresponds to a different type of deformation. The first two are due to bending about the
longitudinal and radial directions, the third accounts for extension of the ring in the circumferential
direction, while the fourth and final term is the torsional contribution. Although one is not limited
to a particular ring cross-section, the effects of warping are not included in eqn (26).

The kinetic energy of the ring stiffener, including rotatory inertia, can be expressed by:

1 2n oW\ L5 [0\
T, =2pRJ [AR(a§+z>§+w§)+I‘g < a;) +af< 60R> l_ZR apdo (27)

0

where p, and I} are the respective mass density and area moment of inertia of the ring cross-
section about the 0-direction.

In general, the centroid of the ring cross-section may not coincide with a desired circumference
on the shell. To account for this, one can permit both a radial offset e« and an axial offset ba,
where e and b are fractions of the shell radius, measured positive in their associated coordinate
directions. In this general case, the ring deformations can be shown to be related to those of the
shell according to:

ow
Upg = u—ea—— (28)
0z
0 ow
UR=(1+€)U—609<W+baaZ> (29)
0
Wg = w—i—bafW (30)
0z

with a, =(1+e)a. Ring stiffeners with radial eccentricity only can be recovered by setting b = 0.
Elastic rings symmetrically disposed about the shell mid-plane result when e = 0. For rings attached
to the shell somewhere between the shell ends, treating the case b # 0 is not necessary. For
situations in which the shell ends with a stiffener, however, allowing for a longitudinal as well as a
radial offset makes it possible to preserve the original length of the undeformed shell, facilitating
sensitivity analyses as well. For the general case, eqns (28)—(30) must be substituted into the elastic
strain and kinetic energy expressions for the ring. Once this is done, Hamilton’s principle must be
applied to the total kinetic and strain energy. For a ring located at z = z;, we obtain the same
governing dynamic relations for the shell interior, but the variational operation in eqn (20) results
in an additional boundary term at the ring location, shown here by:
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L) t, (I [2¢m o
Jé(T—l—TR—U—U,rP%/)dt:—J fj 5%{//5 +L[~%]—gf}ad6dzdz

| L Jo Jo 1*
i, (2m aW z=1
—J f [NZ&H—S_.&H— V.ow—M.o <>} adodr
0 Jo 0z )]
t, (2n 5W
—i—J J |:N55u+5f51)+ VERow—MZES <ﬁz>:| ad0dt (31)
t JO z=1zp

The negative sign on the shell internal forces is a consequence of their positive orientation defined
in Fig. 2. Boundary conditions for the general ring stiffener case with ¢ # b # 0 have been derived
by Callahan (1997). For simplicity of analysis, however, the remainder of this section will assume
that the centerline of the ring coincides that of the shell terminus (i.e. ¢ = b = 0). In this case, the
effective internal forces/moment due to the elastic ring can be expressed as:

ME(z,0) = Eal ,4 (?ZV - ;Z;)— Gac g C,Z(,” + aiv;)m,@aaf (32)
VR(z,0) = — E;f <w+2222v + Z;Y)- E’;f“ <w+ (?Z)—pRARWerR;Z;? (33)
I Y »
SK(z,0) = E’;fR @vg + S;Z>— prARi (35)

For an elastic ring located at the end of the shell, the boundary condition reduces to:

le Jzn [(Nf FN)ou+(SEFS)ov+ (VEFV.)ow—(MEF M.)d @;ﬂ

0

[adet: 0

zr=0

IR=
1

(36)

The top sign on the ring terms corresponds to a stiffener located at zx = /, while the bottom is for
zg = 0. The sign reversal occurs to be consistent with the outer normal in Fig. 2. As they appear
in the diagram, the boundary loads in eqns (21)—(24) are positive at the end z = /. On the opposite
side of the shell element, however, all internal forces have the same definitions but each reverse
their orientation. Thus, it must be specified at which end the ring appears in order to apply the
correct boundary conditions. This is not a concern for a free end, as switching the sign on a
quantity set equal to zero does not affect the result.

Once the four internal force balances have been nondimensionalized, QO matrix entries can be
derived for the elastic ring stiffener end condition. Analogous to Table 2, the coefficient matrix
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Table 3

Coeflicient matrix Q entries for the non-axisymmetric modes (n > 0) with an elastic ring stiffener on a cylindrical shell
ending/beginning (top sign/bottom sign) at z, = Aa

Condition for

S¥(Aa) = £S.(Aa)

N¥(Aa) = £ N.(Aa)

VE(Aa) = £ V.(Aa)

MZ(Aa) = £ M.(Aa)

Condition for

S*(Aa) = £S.(Aa)

NX(Aa) = £N.(Aa)

Vi(Aa) = £ V.(Aa)

ME(Aa) = £ M.(Aa)

O, (r=1,...,4
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entries for the elastic ring are shown in Table 3. For terms with two signs, the top sign is for the
ring located at the end of the shell (e.g. for A = //a), while the second is used at the beginning (e.g.
for A = 0). Axisymmetric conditions can be found by setting n = 0.

A special case for the ring stiffener occurs when the material is assumed to be infinitely stiff
relative to the shell material. Thus, the ratio E/E; for such a rigid ring —» 0. The boundary
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Table 4
Coeflicient matrix Q entries for the axisymmetric modes (n = 0) with a rigid ring stiffener on a shell ending/beginning
(top sign/bottom sign) at z = Aa

Condition Torsional modes (remaining Q«, = 0)
for 0, 0-5
R _ PrAr \ : PrAR
SK(Aa) = +8S.(Aa) » ha 7 cosyA+sinyA ) ha ysinyAFcosyA
/ 2
wherey =Q [—
(I=v)(A+5%)
Condition Axial/longitudinal modes (remaining Q-, = 0)
for 0., (r=2,3,4 Q-, (r=26,7,8)
N¥(Aa) = + N.(Aa) B\ g PrAr e G Y ) PR P
: - Q+2)\" " pha Q+o2)\" " p ha
W(Aa) = 0 e‘er e—a('A
W (Aa) =0 o, e —o, e %A

conditions for this scenario become a combination of dynamic loads and geometrical constraints.
For the axisymmetric case, letting £ — oo in the bending moment balance between (21) and (32)
and the transverse shear force balance between (22) and (33) leads to:

W =0 (37)
W=0 (38)

where ()" denotes d()/dz. Based on the remaining terms in the boundary expression (36), we have
the remaining two axisymmetric rigid ring conditions from the membrane normal and shear force
balances:

NEEN| =0 39)
SEFS.| =0 (40)
zp=0

Considering the four boundary conditions that arise for the axisymmetric modes, the effect of a
rigid ring on the radial displacement is the same as a clamped end. The Q matrix expressions for
the axisymmetric modes subject to a rigid ring end condition are given in Table 4.

Unlike the elastic ring case, the bending modes for the rigid ring must be considered separately
from the other modes with #n > 1. For the membrane normal force N. = + N¥ and membrane
shear force S. = + S¥ balances, letting E; — oo leads to

U
Wt =0 A1)
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W—V=0 (42)

Since a rigid ring by definition does not deform, the conditions (41) and (42) can also be obtained
by requiring the strain energy of the ring in eqn (26) to be zero. Including the information in (41)
and (42) in the boundary expression leads to the two remaining internal force conditions:

VR4 Sk =+V.+8S.

Ip=
zg=0

- (43)

2g=0

ME+aN* =+ M.+aN. (44)

ZIR=

“R

For the vibration modes with n > 1, it can be easily shown that the only displacements that
satisfy the force balances are the same as those for a clamped end, whose associated matrix entries
are given in Table 2. Thus, the only difference between a rigid ring stiffener and a clamped end is
their effect on the axisymmetric and bending modes. This observation is also made by Ludwig and
Krieg (1981) and served as an upper limit check for an elastic ring with a large yet finite Young’s
modulus. The relevant Q matrix entries for the bending modes with a rigid ring end condition are
shown in Table 5.

Table 5
Coefficient matrix Q entries for the bending modes (n = 1) with a rigid ring stiffener on a shell ending/beginning (top
sign/bottom sign) at z = Aa

Condition for 0, (r=1,...,4)
V(Aa)—W(Aa) =0 (1-B,)e**
U(Aa)+aW’'(Aa) =0 (C, +a,) e
A r
VE(Aa)+SE(Aa) = £ V.(Aa) £ S.(Aa) PrO2 |28 4 T |4 B, [02 + B,— (2—)]
p ha = ha
1—
TG+ Ba(l +ﬁ2)—2ﬁ2a,-]}e“'A
R R 2 PR 2 Ar 1 A
ME(Aa)+aN¥(Aa) = + M.(Aa) +aN.(Aa) +o.(0.p?—C)——Q | — 4+ — |, e
P ha = ha?
Condition for O, (r=5,...,8)
V(Aa)—W(Aa) =0 (1-B)e **
U(Aa)+aW’'(Aa) =0 —(C,+a,)e %"
or Ar F_
VE(Ad)+S(Ad) = + V.(Ad) +S.(Aa) {792 [2% + p}ﬁzar[af +B,—(2—V)]
P

1—v
+ T‘[C,.+B,~o<,(l +ﬂ2)—2ﬁ2arl}e*“'A

A 1()
ME(Aa)+aN*(Aa) = + M.(Aa) £aN.(Aa) {i o (2~ C)+ %92 [E + 17;:| oc,} et
na-
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Other boundary conditions are certainly possible, such as springs or end masses. These can be
easily dealt with as long as they can be expressed in terms of the shell displacements, from which
the entries for Q will follow.

5. Modal orthogonality and normalization

When the boundary conditions are such that the natural modes are orthogonal, then modal
analysis reduces the three partial differential equations of motion to a single harmonic oscillator
equation for each mode. We will use the approach taken by Meirovitch (1967) for beams and
plates, in which the stiffness operator is integrated by parts. If the boundary terms vanish, then
the mode shapes are orthogonal. For two mode shapes {#,} and {#,} with respective cir-
cumferential mode numbers p and n, the orthogonality condition follows from

J (U LU dof —J (U Lu,)dod =(of —op) J (U MU} det (45)

where .o/ is the domain of the shell mid-plane and d.«/ = adf0dz. Whenever the left hand side
vanishes and w; # «y, then the mode shapes {%,} and {%,} are orthogonal. This is equivalent to
requiring that the stiffness operator be self-adjoint within the domain defined by the shell mid-
plane. Furthermore, a self-adjoint operator is guaranteed to have real eigenvalues (see e.g. Green-
berg, 1978), yielding real-valued natural frequencies. After integration by parts, one obtains the
following expression:

J (UL deod — J ()L, dt

o/
Eha ([ . . 1+v v /
= — sinn0sinpddo | U U, —U U ———nUJV,+-UW,
1—v2 ), 2a a o
2n 1+ 1—
+J cosn@cosp@d@[ 2avndU,-—|—(1+ﬁ2)Tv(VkV§—V;I/i)
0

! 27
— BV W — V;VV,)} +J sin n0sin pf do [— 2 W, U= Bn(W.V— W,V
(

0 )

/
+21° (W W= W W) — B*a® (W W= W Wi+ W W,— WZ’WI-)J } (46)

0

For two modes with different circumferential mode number, the right hand side of (46) vanishes
due to the periodicity and orthogonality of the sine and cosine functions. For two modes with the
same circumferential mode number, the orthogonality condition can be simplified to the following:
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J " LU dof — J (U\"L{U,) d.ot

of
= —calUN.—UN*+V, S — V.S "+ WV — WV — W M + WM, (47)

where the boundary terms are recognized as the products of the geometric boundary conditions
and their associated internal forces. The constant ¢ is 2z when considering two axisymmetric
modes and 7 otherwise. Any combination of edge conditions that causes this collection of boundary
terms to vanish yields orthogonal modes. Equation (47) shows that the orthogonality of the natural
modes can be reduced to the vanishing of a collection of boundary terms. These products all have
the form of a displacement or slope multiplied by its associated internal force or moment. This
reduction is intuitive, since it can be done for most distributed parameter systems (beams, plates,
etc.). If a displacement is specified to be some value on the boundary, then its corresponding
internal force must remain unknown until the problem has been solved, and vice versa.

In the case of an elastic ring stiffener, it can be shown that substituting the internal force
expressions (32)—(35) into eqn (47) causes the right-hand side to vanish identically. In fact,
switching the sign on each ring load also leads to orthogonal modes. As mentioned in the previous
section, this is important because the signs on the effective ring forces may change direction,
depending on which end of the shell to which the ring is attached. Since the rigid ring stiffener is a
limiting case for this scenario, it also leads to orthogonal modes when present. It should be noted
that the effective internal forces derived here will lead to orthogonal modes for any shell theory
that satisfies (47). This is so because the ring loads were derived here regardless of the form of the
internal forces provided by the shell theory. Only the equating of these expressions was done here.
If the boundary expression is satisfied for the classical fixed/free end combinations, then it will also
work with the effective ring forces derived here. Thus, the elastic ring end conditions derived here
will also work with the shell theories of Morley-Koiter, Sanders, and Fliigge, to name a few,
because each of these will satisfy the boundary expression (47). This can also be verified using
MAPLE to keep track of the numerous terms that develop.

Linear springs can also be accommodated through the boundary conditions. Assuming that
they are fixed to some ground reference, restoring forces imposed by linear springs are simply the
displacements themselves multiplied by the associated spring constants. It is easy to verify that
this causes the right-hand side of (47) to disappear, rendering the modes orthogonal.

For completeness, orthogonality must be established between the rigid body modes and all of
the other types. There are several combinations to consider. Before we proceed, however, it is easy
to verify that for the first three rigid body modes in Table 1, the internal forces defined by eqns
(21)—(24) vanish throughout the shell. For the transverse rotational mode, however, the membrane
normal and bending moment vanish throughout, but the membrane and transverse shear forces
are independent non-zero values, given by

~— EB* (sin0 J12 EB? cos 0
VG0 = - 12H—v(g{COSH $:G.0) =775~ “ —sin 0

where @ is the arbitrary constant used in Table 1. Another result that we will need for the bending
modes is the relation between the radial and circumferential displacements whenever both the
bending moment and transverse shear force vanish simultaneously. When this occurs for the
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bending modes, integrating (22) with respect to z and then subtracting (21) leads to the following
relation:

V(z)—2W(z) = constant, forn =1 and both M.(z,0) =0and V.(z,0) =0 (48)

The two axisymmetric rigid body modes are orthogonal to all modes with n > 0 due to the
periodicity of the sine and cosine functions, regardless of the boundary conditions. When compared
to other axisymmetric modes, however, we must consider what boundary conditions will cause the
rigid body modes to be present. In this case, let the index k correspond to the axisymmetric rigid
body mode and i correspond to any other axisymmetric mode. For zero membrane normal at each
end of the shell, the rigid body mode for pure axial translation is present. Since the membrane
normal for this rigid body mode is zero throughout the body, including the ends, the boundary
terms in (47) corresponding to the longitudinal displacement disappear. For zero membrane shear
at each end, the rigid body mode for pure axial rotation is present. Since the membrane shear for this
mode is zero throughout the body, including the ends, the boundary terms in (47) corresponding to
the circumferential displacement vanish. Therefore, the two axisymmetric rigid body modes will
be orthogonal to all other modes when the boundary conditions are such that they exist.

Both the transverse translation and rotation mode are orthogonal to all modes with n # 1 due
to the orthogonality and periodicity of the sine and cosine functions, regardless of the end
conditions. When compared to other bending modes, however, we must consider what boundary
conditions will cause these rigid body modes to be present. In this case, let the index k correspond
to the rigid body bending mode and i correspond to any other bending mode. For free—free end
conditions, the rigid body bending modes will also be present. Since the internal forces for the
transverse translation rigid body mode are zero throughout the shell, all terms in (47) vanish,
proving orthogonality. Between the transverse rotation mode and other bending modes, however,
the boundary terms do not all vanish as simply. Due to the observation in (48), eqn (47) reduces
to

J L) 49 — J )L, 4T = nalV.SE+ WV = nalSE(V,—2W), (49)

9 iz

Recalling that the membrane shear force is the same at both ends of the shell and using the result
obtained in (48), the remaining boundary terms vanish, completing the final proof for modal
orthogonality. Thus, the two rigid body bending modes will be orthogonal to all other modes
when the boundary conditions are such that they exist.

Now that all the natural modes have been shown to be orthogonal for the several cases
considered, the next step is to normalize them. Since the mode shapes can be determined to within
a multiplicative constant, the arbitrariness is avoided by normalizing the modes according to

| tmyratmyaz = (50)

9

Combining (50) with the modal orthogonality gives the following relations for modes with different
frequencies:
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J (" do = 5, (51)

J (U LU, A9 = widy (52)
9

where 0, is the Kronecker delta. Substituting the modal expansion (5) into the equations of
motion, premultiplying by %7, integrating over the shell surface and employing (51) and (52) lead
to the modal coordinate equations:

i (6) + 02, () = JI J " UL (z,0)F (2,0, )ad0d:z (53)

0J0

The orthonormality of the modes reduces the three partial differential equations to uncoupled
harmonic oscillators for each of the natural modes.

As shown earlier, all non-zero circumferential mode numbers have a degeneracy of two, due to
the circular symmetry of the cross-section. For two modes with equal natural frequencies, choosing
them to have the forms of (7) and (8) will produce the desired result due to the orthogonality of
sine and cosine functions. Applying the orthonormality relations (51) and (52) leads to the
following general modal displacements for each mode with n > 0:

1 4 .y [sinn0
9 — C A o.zla Al e 5l
0= Y A e }{COS "
1 4 , ‘ cos n
6 — B.{A. e%la A/ —o.z/a )
v(z0) /mpha® ,,; Ad et Are J {—smn@
1 4 sin n0
9 — A. o.zla A/ —o,z/a
w(z, 0) e r; (A, e+ Ale ) {cos N

For the axisymmetric modes, the normalization constants for the torsional modes can be found
independently and depend on the boundary conditions.

u(z,0) = w(z, 0) = 0, o(z,0) = W [Al cos <y Z>+A’1 sin <y Z)] (54)

For the radial/longitudinal modes, the general normalized form can be simplified to

1 4 va,
u(z,0) = L glem %l 4 el
GO = i 2 }
o(z,0) = 0
e /
w(iz,0) =—— A, e™7 4 4] el
GO = e }

The rigid body modes can also be normalized according to eqn (51).
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6. Application of commercial software

Two popular commercial software packages were used to facilitate the cylindrical shell eig-
ensolution. MAPLE was used for its symbolic manipulation capability. Soedel’s formulation
(1981) was coded into a MAPLE file in its original form, regardless of the shell geometry. Once
this is done, substituting the appropriate Lamé parameters and radii of curvature lead to the
equations of motion for the desired geometry. For a circular cylindrical shell, the equations of
motion that result are also those obtained by Junger and Feit (1972). Using this procedure, the
natural boundary forces associated with the shell deflections can also be determined. As mentioned
earlier, deriving the boundary conditions consistent with the equations of motion is necessary to
ensure the modal orthogonality of the eigensolution. With the governing equations defined within
MAPLE, the general form of the displacements was substituted into the equations of motion to
obtain relation (10). A common practice at this point is to assume the nature of the axial mode
number m before continuing, such as « = mna,/ — 1// for the freely supported case. Once this has
been done, the determinant of the coefficient matrix in eqn (10) leads to three roots for Q for the
given axial mode number. Associated with each of these values are cases in which each of the
primary shell motions dominates. The assumption of the axial mode number dependence is usually
done because the roots of the determinant cannot be done in closed form. Using MAPLE, however,
the roots of the characteristic equation can be carried throughout the procedure. The values of the
shell parameters can be substituted in at a later time, without prior knowledge of o.. The determinant
of the coefficient matrix set to zero becomes the characteristic equation for «. For a specified set
of v, hja, and [/a, the only remaining unknown is the frequency parameter Q. Knowing that the
values of o that satisfy this equation render the coefficient matrix singular, MAPLE was also used
to generate expressions for B and C by solving the first two of the three equations contained in
(10).

The second task of MAPLE was to handle the wide variety of boundary conditions considered
in this study. To do this, MAPLE routines were written to take any desired combination of
boundary conditions and generate the associated coefficient matrix entries given in Tables 2-5. A
summary of scenarios encountered with the boundary conditions examined here are shown in
Table 6. MAPLE was also used to verify the collection of boundary terms on the right hand side
of eqn (47) for the shell theories of Junger and Feit, Morley-Koiter, Sanders, and Fliigge.

MATLARB was used for its ability to do large scale matrix manipulations and number crunching.
All expressions generated by MAPLE were written to files in MATLAB script format. Regardless
of the complexity of the MAPLE expressions, MATLAB can quickly evaluate their values,
provided that all variables included within the expression are currently defined. Once boundary
conditions and the ratios for v, #/a, and //a are prescribed, the eigenvalue problem can be solved.
The difficulty in solving the eigenvalue problem is that the boundary coefficient matrix O can
become ill-conditioned due to the exponential terms. Furthermore, the characteristic equation that
results involves computing the determinant of this 8 x 8§ matrix, a task beyond even MAPLE’s
capability for the general case. Once the eight boundary conditions are specified, the solution
results by simultaneously obtaining the zeroes of both the characteristic equations for the 3 x 3
displacement coefficient matrix and the 8 x 8§ boundary determinant. Since this is not feasible in
closed form, we chose to iterate through a range for Q, at each step solving the 3 x 3 displacement
determinant for o and substituting it into the boundary coefficient matrix. After a desired frequency
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Table 6

Boundary value subproblems that arise for the end conditions investigated

2993

Scenario

Axisymmetric modes
(n=0)

Non-axisymmetric modes
(n>0)

Fixed/free boundary
conditions

Elastic ring stiffener

Rigid ring stiffener

Torsion decouples, 2
conditions on V(z),
2 x 2 subproblem
Torsion decouples, 2
conditions on V(z),
2 x 2 subproblem
Torsion decouples, 2
conditions on V(z),
2 x 2 subproblem

Axial/long. modes, 6
end conditions, 6 X 6
subproblem
Axial/long. modes, 6
end conditions, 6 X 6
subproblem
Axial/long. modes, 6
end conditions, 6 X 6
subproblem

Full eigenvalue problem, 8 boundary
conditions, 8 x 8 coefficient matrix

Full eigenvalue problem, 8 boundary
conditions, 8 x 8 coefficient matrix

Bending (n = 1) Higher (n > 1)

8 conditions, 8 x 8 8 conditions, treat

matrix as clamped end

band for Qis chosen, another MATLAB script file was written to sweep through this range, solving
for the roots of o and the values of B and C at each step. The determinant of the boundary
coefficient matrix will be a complex number using this approach, so the behavior of the modulus
of the determinant is monitored by MATLARB at each step in the frequency band. Numerically,
the frequencies show up as inverted spikes when the magnitude of the determinant is plotted vs
frequency. Therefore, the MATLAB code simply has to check for these spikes and record when
they occur.

Once the frequencies have been located within a given range, the mode shapes must be determined
next. At each of the frequencies obtained by the first MATLAB code, the values of o, B, and C
are recalled. Since the determinant of the coefficient matrix is singular at these locations, the value
of A is set to unity and MATLAB solves for the remaining seven constants using the first seven
equations contained in (25). Once this is done, the modal coefficients are then normalized according
to eqn (50). This is done by numerically integrating the left hand side of (50) using MATLAB. All
values of A, and A4; are subsequently multiplied by the inverse square root of the value of this
integral. This step normalizes the displacements with respect to the inner product, but they may
still be complex valued. In order to obtain real-valued displacements, they are also multiplied by
a complex rotation mapping et/ —! where ¢ is an angle determined to bring the displacements
back to the real line. Both the modal displacements and their associated internal forces can be
viewed within MATLAB.

7. Experimental validation

Before we use the procedure developed here for parametric shell studies, we will confirm that
solving the equations of motion developed by Junger and Feit will produce frequencies observed
in experiment. Using their theory, Callahan (1997) showed excellent agreement between the present
solution methodology and all of the experimental work cited in the Introduction. Although



2994 J. Callahan, H. Baruh | International Journal of Solids and Structures 36 (1999) 2973-3013

Table 7
Eigenvalues for a beam with various boundary conditions

Boundary Do

conditions 1 2 3 4 5 >5
Clamped—clamped ~ 4.730 7.853 11.00 14.14 17.28 @2m+1)m/2
Clamped-free 1.875 4.694 7.855 11.00 14.14 @2m—1)n/2
Hinged-hinged 3.142 6.283 9.425 12.57 15.71 mn
Free—free 0 0 4.730 7.853 11.00 2m—3)m/2

significantly more experimental papers exist in the literature, comparison is only possible with
those studies that gave actual tabulated values of observed resonant frequencies. Here, we shall
limit discussion to only three of these cases.

For cylindrical shell modes in which the radial deflection dominates, Soedel (1980) derived an
expression for the natural frequencies which depends on the ratios v, /i/a, and //a, the circumferential
mode number 7, and the axial mode eigenvalues of the analogous beam vibration problem. In order
to compare Soedel’s expression with the nondimensionalized frequency €, it can be rearranged into
the following form:

4
2‘"7

Q= p [nzH,i <‘;> } +(1—v?) e ) (55)
(o) 4]

where the values of /,, (m = 1,2, ...) are the eigenvalues of the associated beam vibration problem.
When appropriate, this expression will be shown in addition to the experimental data and the
values obtained using the procedure outlined in this paper. For reference, the eigenvalues for
various sets of boundary conditions treated by Inman (1994) are shown in Table 7.

The first comparison will be with the clamped—clamped experiment done by Koval and Cranch
(1962). They used material properties for mild steel, with E = 206 GPa, p = 7850 kg/m?, and
v = 0.3. The shell dimensions from their experiment were a = 76.2 mm, & = 0.254 mm, and
[ =304.8 mm. They obtained experimental frequencies for the first five axial modes with cir-
cumferential mode number in the range 3 < n < 14. Figure 3 shows the comparison between
Soedel’s approximation, the experimental data, and the results obtained in this paper. The agree-
ment between Soedel’s eqn (55) and experiment is very good because the shell is very thin compared
to its radius. This causes the radial modes to dominate in the experimentally tested bandwidths.

The second thin shell case we will consider is the clamped—free shell experiment done by
Khadakkar et al. (1988). The material used in this shell was mild steel, with the typical material
properties E = 207 GPa, p = 7860 kg/m’, and v = 0.28. The shell dimensions from their experiment
are a = 32.25 mm, & = 1.5 mm, and / = 254 mm. They obtained experimental frequencies for the
first five axial modes with 1 < n < 4. Figure 4 shows the comparison between Soedel’s approxi-
mation, the experimental data, and the results obtained in the present study. As discussed by
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Fig. 3. Nondimensional frequency Q vs mode numbers m and n according to Koval and Cranch (O), Soedel’s equation
(—), and the present approach (x).

Soedel in his paper, the accuracy of eqn (55) increases with growing n for a given axial mode
number.

The final experimental comparison uses the elastic ring—elastic ring shell results obtained by El
Raheb and Babcock (1981). They used aluminum with the properties £ = 68.2 GPa, p = 2700
kg/m’,v = 0.33, and integral rings machined into the shell to achieve the elastic ring end conditions.
The shell dimensions from their experiment are ¢ = 102.0 mm, 42 = 0.365+0.022 mm, and / = 177.8
mm. They created a ring with rectangular cross-section, with the dimensions shown in Fig. 5.
Using these values, the ring parameters become:

e =0.0330, b=0.0747

A I: I I C E
AR 29098, —% =0.0012 % =0.0066. —% =0.0054 —=00035 -R=Pr_;
ha ha® ha’ ha® ha’ E p

Figure 6 shows the experimental data plotted with the frequency predictions generated by the
present approach. Also shown are the frequency predictions corresponding to true clamped
conditions. At lower values of 7, the clamped end produces frequencies significantly higher than
the elastic ring case, but becomes an adequate approximation as it increases. The authors estimated
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Fig. 4. Nondimensional frequency Q vs mode numbers m and n according to Khadakkar et al. (O), Soedel’s equation
(—), and the present approach ( x).

Fig. 5. Schematic diagram of the cylindrical shell used by El Raheb and Babcock.
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Fig. 6. Nondimensional frequency Q vs mode numbers 2 and n according to El Raheb and Babcock (QO) and the present
approach using elastic ring (—) and clamped (---) end conditions.

uncertainty in the shell thickness to be around + 6%. These values were also put into the solution
procedure, with the results shown in Fig. 6 as the dotted lines. Here, the upper and lower curves
are associated with the upper and lower bounds on /. Many of the data points fall within the
bounds resulting from the uncertainty in the shell thickness. Figure 6 illustrates the heightened
sensitivity of the frequency behavior to small variations in the shell thickness with increasing n.
All computed values agree with the experimental data to within 4% %, well within the uncertainty
reported for /.

8. Parametric studies

Now that confidence has been established in the frequency predictions, we can use the present
approach to investigate the associated mode shapes. To see the effects of different boundary
conditions on the natural mode shapes, we will show some examples. The first case is a clamped—
free cylindrical shell with v = 1/3, h/a = 1/20, and //a = 3. Figures 7 and 8 show the first two
bending (z = 1) and n = 3 modes, respectively, for these ratios and the clamped—free boundary
conditions. The second example is a free—free cylindrical shell with the same dimensions and
Poisson ratio as the previous case. Note immediately that all six rigid body modes given in Table
1 will be present, so the first natural frequency is zero with a degeneracy of six. Some of the first
few modes with nonzero natural frequencies are illustrated in Figs 9 and 10.
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Fig. 7. First two bending modes for a clamped—free shell with //a = 3, h/a = 1/20, and v = 1/3.
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Fig. 8. First two modes with n = 3 for a clamped—free shell with //a = 3, hja = 1/20, and v = 1/3.
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Fig. 9. Fourth and fifth axisymmetric modes ( first two are rigid body modes, third is pure torsion) for a free—free shell
with l/a = 3, hja = 1/20, and v = 1/3.
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Fig. 10. First two ovalling modes for a free—free shell with //a = 3, h/a = 1/20, and v = 1/3.

With the present approach coded in MATLAB, it can also be used as a tool to investigate the
dependence of the shell frequencies on the mode numbers m and . For a prescribed set of boundary
conditions, the approach developed in this paper can also be used to generate frequency maps,
showing the variation in natural frequencies for a particular family of mode types. The benchmark
result investigated over the years is the freely-supported shell, whose boundary conditions are:

N.=0, M.=0, and v=w=0 atz=0,/

This is the cylindrical shell analog to the simply-supported beam. For a fixed set of mode numbers
m and n, there are three types of motion that can occur. This can be explained by examining the
matrix on the left-hand side of eqn (10), whose characteristic equation produces three values of Q
for a fixed o and n. As observed by Soedel (1981), the lowest value is associated with flexurally
dominant motion, characterized by radially dominant modeshapes. The other two are usually
associated with motion in which stretching or shearing of the tangent plane dominates. Dis-
tinguishing between the flexurally dominant and other types can be done by simply observing the
nature of the mode shapes. Separation between predominantly axial and torsional modes, however,
is more difficult because their deflections are often of comparable magnitudes, especially at lower
values of n. Rather than classify the remaining types in this manner, another way is separation
into dilatationally and shear dominant modes. This is achieved by examining the volume change,
&..+ &y, and the in-plane shear, ¢, respectively, at each frequency. The frequencies corresponding
to dilatation are usually larger than the shear type given the same mode number . Thus, for a
given mode number pair (1, 1), one can find three modal configurations, where flexure, shear, and
dilatation of the mid-plane dominates the mode shape, usually in increasing frequency order.
Figure 11 shows the frequency map for a freely-supported shell with //a = 3, h/a = 1/20, and
v = 1/3. Shown in the figure are the first seven flexural and shear modes, as well as the first four
dilatational modes. The three types of shell vibration separate into distinct bands of curves as n
increases. At lower values of n, the flexural modes are still reasonably distinct, but curves for the
other two types overlap in this region, making separation between them difficult. At larger », axial
dominant motion becomes characteristic of the shear dominated modes, while torsional dominance
becomes indicative of the dilatational modes. Thus, separating the vibrational modes in either
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Fig. 11. Nondimensional frequency Q vs mode numbers m and » for a freely-supported shell with //a = 3, h/a = 1/20,
and v = 1/3.

manner produces the same result in this region. At lower n, however, axially or torsionally dominant
deformation does not seem to be the best indicator of mode type, as connecting them in this
fashion would lead to bizarre frequency trends. It is in this regime that classification into shear
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Fig. 12. Nondimensional frequency Q vs mode numbers m and n for a clamped—clamped shell with //a = 3, hja = 1/20,
and v = 1/3.

and dilatation dominated motion becomes superior. In fact, modes that begin as axial dominated
motion at n = 0 evolve into predominantly torsional modes at larger 7, and vice versa. In this and
future cases, it was found that the first axisymmetric torsional mode begins the family of fun-
damental (m = 1) flexurally dominated modes. Discussion for other boundary conditions will be
restricted to the flexural modes, as they make up the lowest set of frequencies. For comparison
purposes, however, the first two shear mode curves will be shown as well, illustrating just how
quickly they grow relative to the flexural behavior.

Since a clamped end or a free end represent the two possible extremes for a boundary condition,
frequency behavior involving these two combinations will be addressed next. Figure 12 shows the
clamped—clamped frequency behavior with increasing circumferential mode number 7 for a given
axial mode number m. Figures 13 and 14 do so for clamped—free and free—free conditions,
respectively. As mentioned earlier, although the axisymmetric torsional modes decouple from
other mode types, they are still present and therefore must be accounted for when predicting shell
frequencies. For each of the figures shown, modes with n = 3 or n = 4 tend to have the lowest
frequencies for a given axial wave number.

To obtain an overall effect of boundary conditions on the shell flexural frequencies, Figs 12—14
can be examined together. Looking at them in the order 12, 13, and 14, the effect of changing a
clamped end to a free end is an increase in the frequency band for small » while it decreases as n
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Fig. 13. Nondimensional frequency Q vs mode numbers m and n for a clamped—free shell with //a = 3, hja = 1/20, and
v=1/3.

gets large. There is a tighter packing of the frequency bands at larger n as each fixed end gets
released. Although only the first two shear modes are shown in each figure, a decrease in natural
frequency and packing of these curves occurs as well.

For all the thin shell cases considered, none of the experimental work contained data for the
axisymmetric (n = 0) modes. Although not directly stated in the references, there are several
reasons why these modes may have been avoided. First of all, many of the experiments relied on
the presence of nodal lines for resonance identification. For the axisymmetric torsional frequencies,
there are no nodal lines using a small deflection approximation. Unless lines parallel to the
longitudinal axis are drawn on the shell, motion of this type cannot be observed visually. Further-
more, most vibration sensors, such as accelerometers or piezoelectric films, rely on transverse
bending for motion detection. This does not occur for pure torsion. Thus, the first detectable
axisymmetric mode is often of the flexural type. Referring to Figs 12—14, there are 32, 35, and 44
other flexural frequencies present below the first axisymmetric flexural mode. Therefore, when
checking for the shell modes using conventional measurement techniques, one will encounter a
large number of natural modes before the first detectable axisymmetric mode is reached. These
observations may explain why modes with n = 0 were not included in the experimental references.
In addition, some experimental work cited here excluded frequency data for the bending modes
(n = 1) as well. Referring to Figs 11-14, for n > 2, the first seven flexural modes appear well below
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Fig. 14. Nondimensional frequency Q vs mode numbers m and n for a free—free shell with //a = 3, hja = 1/20, and
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the first shear mode. Thus, one is assured the first seven modes will be flexurally dominant at
higher values of . Since most measurement techniques relied on appreciable bending deformation,
the flexural modes will produce the strongest output signals.

Next, consider the effect of changing the length of the shell. This comparison will be done
using clamped—free end conditions. Figure 13 showed the frequency behavior with increasing
circumferential mode number # for a given axial number m. Figure 15 uses the same shell parameters
except //a is doubled. Using some intuition from beam vibration theory, the frequencies can be
expected to decrease for a given (m, n) pair with an increase in axial length. Referring to Figs 13
and 15, this is indeed the case for small values of n. At large values of n, however, although the
frequency band between 1 < m < 7 is significantly decreased, the fundamental axial frequencies
(m = 1) seem to approach the same values.

Upon further investigation of the Figs 11-15, note that they have the same behavior for the
m = 1 flexural modes as n gets large, regardless of boundary conditions or length to radius ratios.
Calladine (1983) derived a frequency equation for the bending modes of a simple ring. For a ring
with rectangular cross-section, radius a, and radial thickness 4, this result can be expressed in
terms of the shell parameters defined earlier as:

n*—1

Jn?+1

Q=fn (56)
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Fig. 15. Nondimensional frequency Q vs mode numbers m and n for a clamped-free shell with //a = 6, hja = 1/20, and
v=1/3.

For the moment, assume that the cylindrical shell behaves like a ring when m = 1. Figure 16 shows
the comparison of eqn (56) against the fundamental axial frequencies shown in Figs 11-15. As n
gets large, the flexural frequencies converge to the same values, behaving as a ring in pure radial
vibration. Thus, the hoop approximation acts as a lower bound on the fundamental axial modes.
Note that this bound is independent of the boundary conditions or changes in shell length. This is
the well-known result obtained by Rayleigh for the natural frequencies of an infinite cylindrical
shell.

When searching for natural frequencies using the present approach, the MATLAB code needs a
range of frequencies through which it will search. As shown through the experimental comparisons,
Soedel’s eqn (55) gave frequencies that were consistently higher than realized. Hence, we can use
this equation as an upper bound for a given pair of n and m. For any set of boundary conditions
and a given circumferential mode number, the frequency search can be started at the value given
by eqn (56). If we want to find the first m axial modes for the chosen value of n, we increase Q up
to the value predicted by eqn (55), since the actual value for the mth frequency will be less than
this bound. Soedel’s equation together and the infinitely-long vibrating cylinder approximation
serve as suitable bounds for the frequency search. This offers a significant reduction in computation
time over a completely exhaustive eigenvalue search.

Now that the classical free and clamped ends have been examined, one can consider the effect
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Fig. 16. Fundamental axial frequencies vs circumferential mode number 7 for the boundary conditions investigated.

of attaching a ring stiffener to a free end. Both the free end and the clamped end can be recovered
from the elastic ring end condition by letting the ring properties take on extreme values. A rigid
ring will be discussed first, attached to the clamped—free shell discussed earlier. In addition to
ratios v = 1/3, h/a = 1/20, and //a = 3, the ring has a rectangular cross-section with radial and
longitudinal thickness ratios of igx/h = 5 and 5/l = 0.01. Clamped—clamped behavior for very large
pr/p values can be intuitively expected, with ‘almost’ clamped—free frequencies when p,/p goes to
zero. The latter will be due to the geometric constraints defined by eqns (41) and (42) that still
remain, leading to frequencies slightly higher than the associated clamped—free values. Figures 17
and 18 show the behavior of the bending and axisymmetric modal frequencies as the ring density
ratio is varied from 0 < pg/p < 10°, where pure torsional motion is designated with dashed lines.
These results were generated using the Q matrix entries for a clamped end in Table 2 at z = 0 and
those for a rigid ring in Tables 4 and 5 at z = //a. At very small values of pg/p, the difference
between the actual frequencies and clamped—free behavior grows with axial mode number m as a
result of the two geometric constraints. For large pr/p, however, the frequencies of the first two
modes collapse to zero in both figures, denoted by question marks. As discussed earlier, the z-
dependent rigid body motion of a shell consists of two axisymmetric modes and two in bending.
These four frequencies get forced to zero as clamped—clamped end conditions are achieved. Each
of these correspond to the rigid body modes of a massive ring. Thus, the question marks in Figs
17 and 18 are not mysterious at all, since the elastic strain energy is made up of both that of the
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Fig. 17. Nondimensional frequency Q vs p./p for the bending modes with a rigid ring stiffener, where (—) denotes actual
data, (Q) are the clamped—clamped values, and ( x ) are the clamped—free values.

shell and that of the ring stiffener. The behavior of the ring and the shell decouple in these extreme
cases.

If we relax the rigid ring constraint by also permitting the ratio E/E to go to zero, we should
recover the clamped—free frequencies of the shell discussed earlier, while retaining the clamped—
clamped behavior at a large values of Ei/E and pg/p. Figures 19 and 20 show the frequency
evolution for the bending and axisymmetric modes with Ex/E = pg/p given the same shell and ring
dimensions in Figs 17 and 18. These results were generated using the Q matrix entries for a clamped
end in Table 2 at z = 0 and those for an elastic ring in Table 3 at z = //a. When the ratio goes to
zero, the clamped—free behavior is indeed recovered. At large values of Ex/E = pg/p, however,
four of the modes converged to frequencies (denoted by question marks) that were not predicted
by the clamped—clamped eigensolution in both cases. These are modes for which the elastic ring is
effectively vibrating as if the shell were not there. Thus, they need to be analyzed with the help of
thin ring vibration theory.

The vibration problem of a thin elastic ring has been discussed by Love (1944) for circular cross-
sections and extended to the rectangular case by Charnley et al. (1989). Four types of motion can
exist for a vibrating circular ring. The first two are inextensional and extensional vibration and are
called planar motion, for which the frequency of the latter is the larger of the pair. These can be
interpreted as shapes where the mean circumference of the ring is and is not conserved during the
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Fig. 18. Nondimensional frequency Q vs p./p for the axisymmetric modes with a rigid ring stiffener, where (—) denotes
actual data, (--) denotes torsional data, (O) are the clamped-—clamped values, and ( x ) are the clamped—free values.

motion. For further discussion on the nature of the ring mode shapes, the interested reader is
referred to the original paper. Using the quantities defined throughout this paper, these frequencies
satisfy the characteristic equation:

Qiexex: K Q'—K,Q*+ K5 =0, with the coefficients

K, = |:pR/pj|2 |:AR +(n2+1)12}
L= EE] | & a*

A I
, = ,OR/P (n2+1)R+(2n4_n2+1)i|
(1—=v})ER/E a’ at
2 2 2 IZ
K, =n*(n*—1) " (57)

The other class is termed non-planar motion and consists of axial and torsional vibration, the
latter type having the larger frequency. Although more difficult to envision than the previous class
for higher values of n, the axial direction is along the 0-axis of the shell while torsion is oriented
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Fig. 19. Nondimensional frequency Q vs pg/p = Ex/E for the bending modes with an elastic ring stiffener, where (—)
denotes actual data, (QO) are the clamped—clamped values, and ( x ) are the clamped—free values.

about the f-axis. For an isotropic material, these frequencies arise from the following characteristic
equation:

Quiaors:  KiQ* —KsQ? + K, =0, with the coefficients

k= | pelp TI (A T
(1—=Vv)ER/E]| a*\a’ at

Kszw ﬁ_‘_nzl £+n2CT7/a4 +I’12L9 n2£+c7~7/a4
(1= ER/E || & at || a* 2(1+vg) at| at 2(1+vg)
I Cila*
K. =22 —1)2— T 58
Using the present ring and shell dimensions, the changes in frequency parameter Q for these four
types vs n are shown in Fig. 21.
Each of the four terms appearing in the ring elastic strain energy (26) corresponds to one of the
four independent ring modes mentioned here when both the density and Young’s modulus are
much larger than those of the shell itself. Thus, four of the shell frequencies will evolve into those
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Fig. 20. Nondimensional frequency Q vs pi/p = E/E for the axisymmetric modes with an elastic ring stiffener, where
(—) denotes actual data, (--) denotes torsional data, (O) are the clamped—clamped values, and ( x ) are the clamped—
free values.

for a ring vibrating on its own, explaining the behavior observed in Figs 19 and 20. Looking at
the frequency comparisons in Table 8, the four unknown frequencies in both cases have been
identified when pure ring vibration is taken into account. According to Fig. 20, note that the
second torsional mode for the clamped—free conditions becomes the first torsional mode for the

Table 8
Comparison of unexpected shell frequencies with those of pure ring behavior

Vibrating ring (Fig. 21)

Mode For the At large Unexpected
type parameters  values of values for Q Q. ial Qiors Qinext (O

Bending (Fig. 19) 14/l =0.01, pg/p = Ex/E = 10° 0.0013,0.0059, 0.1727, 0 (RBM) 0.1727 0 (RBM) 1.3316

helh =5 1.332
Axisymmetric 1o/l = 0.01, pu/p = Ex/E=10° 0.0027 (T), 0.0045, 0 (RBM) 0.1123 0 (RBM) 0.9453
(Fig. 20) hlh =5 0.1125, 0.9428

(T) denotes torsional axisymmetric modes. (RBM) denotes rigid body modes.
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Fig. 21. Nondimensional frequency Q vs n for the four ring vibration types.

clamped—clamped case (third becomes the second, etc.). This occurs because the first torsional
frequency with the clamped—free ends evolves into a ring rigid body mode, producing trivial shell
displacements.

For the axisymmetric extensional ring mode, there is a slight discrepancy between the frequency
values. Following the ring theory of Charnley et al. and the present dimensionless quantities, the
frequency for this mode is Q = /1 —v? = 0.9428. Using the ring energy expression (26), its value
can be shown tobe Q = \/(1 —v)(1+15/Ara*) = 0.9453. The second term in the additional factor
under the radical is often negligible compared to unity, but has a small contribution here, making
the frequency value about 0.3% higher.

If pr and Ej are significantly larger than those of the shell, this does not imply that the ring is
rigid. Rather, the dynamic behavior of the shell and the ring become independent sets of mode
shapes in this case. Thus, four extra modes exist for each circumferential mode number 7, in
addition to those predicted by clamped—clamped behavior, due to a large but finite ring stiffness.
At these frequencies, the ring vibrates as if the shell were not there at all. Using the non-dimensional
parameters defined here, their values can be shown to be proportional to /(Eg/E)/(pr/p). The
shell mode shapes corresponding to these frequencies show how the ring motion propagates
through the shell to the other boundary. As an example, Fig. 22 shows how the mode corresponding
to Q,, evolves with increasing Er/E = pg/p. These are associated with the second lowest solid line
in Fig. 20 which becomes the ring torsional mode as E/E = pg/p gets very large.
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Fig. 22. Evolution of the fourth axisymmetric mode (R = Eg/E = pg/p) from clamped—free behavior
(R = 0,9y, = 0.9206) to ring-dominated torsional vibration (R — 00,0 s = 0.1123).

Another study that the present solution procedure makes possible is the effect of ring eccentricity
on the eigensolution. Here, the mean radii of the shell and ring were assumed to coincide, but ring
eccentricity can be considered by substituting a, for a everywhere it appears in the ring forces and
defining the geometric relations between the ring and shell displacements. Although this com-
plicates the expressions, it is a task that MAPLE can handle. As far as the MATLAB code is
concerned, its sole purpose is number crunching leaving the Q matrix definitions to MAPLE. As
long as the relevant shell parameters are given numerical values as they are introduced, the origin
of the matrix entries is immaterial, further illustrating the flexibility of using the two packages
together.

9. Conclusions

Due to the advent of high performance computers and robust commercial software packages,
the solution to the vibration problem of thin isotropic circular cylindrical shells can be done in
closed form with numerically determined coefficients. Since these coefficients are constants for a
given mode, quantities that involve spatial derivatives can be found explicitly. No error due to
finite difference approximations is introduced. As long as the equations of motion are derived
consistently with the internal loads, the natural modes will be mutually orthogonal for a large
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variety of boundary conditions, including the rigid body modes when they exist. Excellent agree-
ment between experimental data and Junger and Feit’s theory is obtained via the present approach.
The power of the present solution procedure comes from the flexibility of the MAPLE code to
change boundary conditions and the ease with which one can vary both shell and ring properties
within MATLAB.
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